MAY 1992

TDA2086 PHASE CONTROL INTEGRATED CIRCUIT

The TDA2086 is a silicon integrated circuit designed for use in closed or open loop phase control circuits of AC with resistive or inductive loads. In closed loop systems analog voltage or tacho frequency feedback may be used.

The circuit was primarily designed for motorspeed control in power drills food mixers washing machines etc. In the event of an open circuit tacho generator connection the TDA2086 will demand full speed/power.

FEATURES

- Power direct from AC mains or DC line.
- **5**V supply available for ancillary circuitry.
- Low supply current consumption.
- Average or peak load current limiting.
- Ramp generator to provide controlled
- acceleration.
- Negative triac firing pulses 100mA guaranteed minimum.
- Warning LED drive circuit.
- Actual speed derived from tachogenerator frequency or analog feedback.
- Well defined control voltage§phase angle relationship.
- Inhibit input for use with thermistor temperature sensors.

BLOCK DIAGRAM

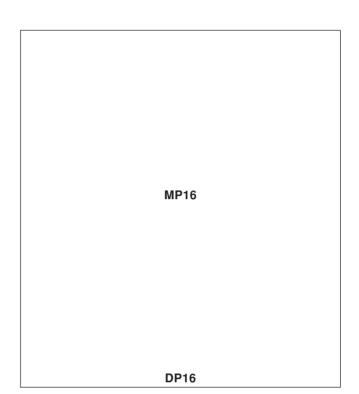


Fig.1 Pin Connections (top view)

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS (unless otherwise stated)

 $T_{amb} = +25^{\circ}C$ All potentials measured with respect to common (Pin 3) (unless otherwise stated). Pin numbers refer to DP16 package.

	Value					
Characteristic	Min.	Тур.	Max.	Units	Conditions	
CURRENT CONSUMPTION Pin 4 IC operating current		31	41	mA	Pin 4 voltage = 13.5V including triac gate drive current	
SHUNT VOLTAGE REGULATOR Pin 4 Regulating voltage Voltage monitor enable level	-16 -11	-14.75	-13.5 -9	V V	Full temperature range	
SERIES REGULATOR Pin 11 Regulating voltage (Vreg) Temperature coefficient External load Regulation	-5.35 -75	-5	-4.65 ±1 10 +75	V mV/°C mA mV	1mA external load For 0-5mA external load change	
RAMP GENERATOR Pin 9 Capacitor charging current Capacitor discharge current Capacitor discharge current Capacitor to actual speed voltage clamp	25 -0.8	30 25 10	35+0.8	μΑ μΑ mA V	Load current limit in operation Load current inhibit in operation 5V on ramp C	
SPEED PROGRAM CIRCUIT Pin 10 Input voltage range Input bias current Zero power demand voltage	Vreg -0.5 -100	-75	0 1 -50	V μA mV		
FREQUENCY TO ANALOG CONVERTER Pin 15 Tacho input voltage Hysteresis Bias current Pin 15 to Pin 14 Conversion factor (typical application) Pin 4 to Pin 13 Conversion gain	100 30	40 0.5 1	60 10	mV mV μA mV/rpm	Peak value C pin 14 = 10nF, R pin 13 = 150k, 8 pole tacho 10000 rpm max.	
ERROR AMPLIFIER Pin 9 and 13 Input voltage range Input bias current	Vreg	0.5	0 ΙμΑ	V		
Pin 10,13 and 12 Input offset voltage Transconductance	-5 80	100	+15 120	mV μΑ/V	$V_{10} - V_{13}$ to give $I_{12} = 0$	

ELECTRICAL CHARACTERISTICS (continued)

	Value				
Characteristic	Min.	Тур.	Max.	Units	Conditions
Pin 12 Output current drive	±20		±35	μA	
FIRING PULSE TIMING Pin 7					
Voltage SYNC trip level	±35	±50	±65	μA	
Pin 6 Current SYNC trip level	±35	±50	±65	μA	
Pin 12 Phase control voltage swing	Vreg		0	v	
Pin 13 Firing pulse width Pulse repetition time		50 100		μs μs	C pin 16 = 47nF C pin 16 = 47nF, R pin 1 = 200k
FIRING PULSE OUTPUT Pin 2 Drive current Leakage current	100	125	150 10	mΑ μΑ	Pin 2 V = -3V Pin 2 V = 0V
LOAD CURRENT LIMITING Pin 5 Offset voltage		±20	mV		
Pin 5 and 8 Current gain	0.475	0.5	0.525		Pin 5 current = 100µA
Pin 8 Voltage for load current limit Voltage for load current inhibit		-1V -1.5V			(0.2 Vreg) (0.3 Vreg)

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL	Value	Units
Triac gate voltage pin 2	4	V
Repetitive peak input current pin 4	80	mA
Non repetitive peak input current pin 4 (tp = 250μ s)	200	mA
Peak input current pin 5 positive half cycle	2	mA
Repetitive peak input current pin 5 negative half cycle	80	mA
Non repetitive peak input current pin 5 negative half cycle (tp = 250µs)	200	mA
Peak input current (I _{SYNC}) pin 6	±1	mA
Peak input current (V _{SYNC}) pin 7	±1	mA
Inhibit input voltage pin 8	Vreg	V
-5V regulator current pin 11	10	mA
Control amp input voltage pin 13	Vreg	V
Tacho input current pin 15	I 20	mA
THERMAL		
Operating ambient temperature	0 to +85	°C
Storage temperature	-55 to +125	°C

TACHO INPUT DRIVE

The TDA2086 requires less than $10\mu A$ (pk) to drive the tacho input (pin 15) and has bidirectional clamping. This makes it possible to connect a tacho pick up coil directly to the device hence minimising component count.

A motor may fail to start up if a signal is picked up by a sensitive tacho due to vibration in the rotor caused by elastic sticktion when power is initially applied. This can be easily overcome by incorporating a filtering capacitor across the tacho input.

SPECIAL FEATURES

Low Supply Current Consumption

Due to the low current consumption of the device the power dissipation in the mains dropper resistor may be as low as 1 IW on a 220V AC supply (0 5W on 110V).

By incorporating both a shunt and a series voltage regulator in the IC design, a high ripple voltage can be accommodated on the supply smoothing capacitor.

The combination of the above two features result in reduced size and a minimum count of components used in the power supply circuitry.

Powered Direct from AC Mains or DC Line

This device incorporates a shunt regulator (-15V) such that it may be powered from an AC or DC supply via current limiting components or the device may be powered direct from a -12V DC supply.

-5V Supply available for Ancillary Circuitry

A -5V series regulator is incorporated to provide a smooth supply for the internal analog control functions. This supply may be used externally to power ancillary circuitry such as timing circuits and other logic control circuits etc, as well as driving potentiometers for the analog control inputs.

Due to this supply technique, greater symmetry between positive and negative half cycle firing phase angle will result.

Low Supply Inhibit Circuit

Timing functions and triac gate drive pulses are inhibited until there is sufficient supply voltage across the device to guarantee complete gate drive pulses.

This ensures that bulk conduction is established in the triac and correct linear operation of the control system is maintained.

Negative Triac Gate Firing Pulses

Since the device works with the positive supply as common, the triac gate pulses are negative going. This is an advantage when selecting a suitable triac since most triac manufacturers prefer this drive polarity.

The device is designed to give a triac pulse that is greater than 100mA for a period of 50 microseconds with standard pulse timing components (47nF, pin 16). Repeated triac gate pulses are given if the triac fails to latch or becomes unlatched due to motor brush bounce.

Well-Defined Control Voltage/Phase Angle (Open Loop)

An internal 5V stabiliser circuit is used as the charging voltage for the pulse timing ramp capacitor and as the reference voltage for the speed input potentiometer. This ensures that maximum phase angle can be obtained by adjusting the resistor or capacitor on the pulse timing circuit, without affecting the maximum setting.

Average or Peak Load Current Limiting

The load current is normally sensed in the positive mains cycle by means of a low impedance resistor in series with the triac and load. The voltage drop across this resistor is converted back into a low current source by a second resistor and fed into the load current sensing input (pin 5) of the IC. In high load current applications where the power dissipated in a series sensing resistor would be unacceptable, a current transformer may be uitilised.

The current fed into the sensing input (pin 5) is mirrored by the IC and fed to the inhibit input (pin 8). Peak current limiting can be provided at this point by inserting a resistor between pin 8 and common (pin 3), whereas average current limiting requires the addition of an integrating capacitor.

When average current limiting is used the double action of the inhibit circuit is utilised. This has two trip points such that when the first trip point (-1V) is reached the power to the load will be gradually reduced by decreasing the voltage on the ramp capacitor, (the discharge rate being equal but opposite to the soft start), hence reducing the power and providing a constant current drive (producing constant torque) to the motor. When the second trip point (-1 5V) is reached a general reset of all timing functions occurs at a fast rate, hence if a gross overload was suddenly applied to the motor, a rapid reduction in power supplied would result. Since it is not possible to turn the triac off during a cycle, the triac and motor should be chosen to be capable of withstanding one complete mains cycle under the worst overload condition.

Peak load current limiting tends to produce a fold back action (of motor speed and torque) at large conduction phase angle. This is due to the peak current initially increasing when the phase conduction angle is reduced at constant load torque.

Ramp Generator to provide Controlled Acceleration

The ramp generator is a follower integrator design which can be used to control the acceleration rate up to the programmed speed. This can also be used to control the rate of phase angle increase in open loop control systems.

The ramp rate is defined by an internal current source (25 microamps) and the capacitor connected to pin 9.

Warning LED Drive Circuit

The LED drive circuit is designed to drive an LED in series with the device such that the overall current consumption is minimised by utilising the IC drive current to power the LED. Due to the multiplexing technique on pin 5, some additional current will be required when the circuit is used to provide both load current limit and LED drive (this will normally be about 0 5mA).

The LED will illuminate under one of the following two conditions:

1. The programme speed (or phase in open loop systems) is set for zero.

2 The running speed is less than that programmed.

Hence, indication will be given when the system is powered up but zero power demanded, or when the machine cannot maintain the set operating speed due to the load current circuit operating. The LED will also be illuminated while the soft start function is in operation i.e., the LED will turn off only when the set speed has been reached.

Actual Speed Derived from Tacho Generator Frequency or Analog Feedback

Tacho frequency or analog feedback may be used with this device. When frequency feedback is used, the frequency to analog (F-A) conversion circuit is used. This circuit is extremely linear and tracks the regulated (-5V) supply.

Frequency feedback has the advantage of not being dependent on mechanical clearance, magnetic strength, etc., and since the conversion rate is defined by two external components, accurate speed programming can be obtained without the need for calibration.

NOTE: A small capacitor may be required across the tacho coil to filter tacho noise at start-up.

http://www.mitelsemi.com

World Headquarters - Canada

Tel: +1 (613) 592 2122 Fax: +1 (613) 592 6909

North America

Tel: +1 (770) 486 0194 Fax: +1 (770) 631 8213

Asia/Pacific

Tel: +65 333 6193 Fax: +65 333 6192

Europe, Middle East, and Africa (EMEA) Tel: +44 (0) 1793 518528 Fax: +44 (0) 1793 518581

Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively "Mitel") is believed to be reliable. However, Mitel assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel or licensed from third parties by Mitel, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or other intellectual property rights owned by Mitel.

This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or services (Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel's conditions of sale which are available on request.

M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation Mitel Semiconductor is an ISO 9001 Registered Company Copyright 1999 MITEL Corporation All Rights Reserved Printed in CANADA

TECHNICAL DOCUMENTATION - NOT FOR RESALE